December 9, 2022
Trending Tags

Gender composition and wage gaps in the Canadian health policy research workforce in comparative perspective | Human Resources for Health

Read Time:5 Minute, 57 Second

Descriptive analysis

According to the 2016 census, 122 510 Canadians aged 25–54 were employed in a policy research occupation, with this workforce characterized as predominantly female (61% women) (Table 2). Specifically, one in six (16%) were working in health policy research, a domain characterized by more pronounced gender segregation (74% women). Of the eight policy research occupations under observation, only the economics policy research workforce was male-dominated (44% women). The remaining occupations under observation tallied 53‒75% women.

Table 2 Gender distribution and wage conditions among health and non-health policy researchers aged 25–54

All eight occupations were characterized with lower average annual earnings among women than men, despite similarities in job duties and working conditions. Women in the health policy research workforce earned an average of 88 cents for every dollar earned by men (Table 2). Across the other occupations, the gender earnings ratio ranged from 72 to 91 cents to the dollar. Occupations in traditionally male-dominated sectors (notably, the economics, natural and applied science, and business development policy domains) tended to offer higher average levels of remuneration than occupations in traditionally female-dominated sectors (including the health, education, social, and recreation policy domains). The higher-paying occupations were also characterized with wider gender earnings ratios (72‒82 cents to the dollar) than their counterparts in traditionally female-dominated sectors (88‒91 cents to the dollar).

Across occupations, having a higher share of women was correlated with lower mean wages among women (r = − 0.68) (Fig. 1). The negative correlation of occupational feminization was even stronger in terms of dropping mean wages among men (r = − 0.80).

Fig. 1
figure 1

Mean annual wage by percent female among health and non-health policy researchers, according to policy domain

Health policy researchers were primary employed in healthcare and social assistance establishments (females: 44%; males: 39%) and in public administration (females: 24%; males: 26%), although not exclusively so (Fig. 2). Non-negligible numbers were engaged in educational services and in other scientific and technical services. Conversely, healthcare and social assistance establishments engaged large numbers of recreation policy researchers (females: 17%; males: 6%) and social policy researchers (females: 11%; males: 6%). In other words, the boundaries of the health system were not easily delineated by any given policy research domain.

Fig. 2
figure 2

Percentage distribution by place of work among health and non-health policy researchers, according to policy domain

The age structure of the health policy research workforce differed little by gender (Table 3). In contrast, women policy researchers in natural and applied science domains and in business development domains tended to be younger than men, that is, more often in the 25–34 years age group—a reflection of the feminization of sectors where women have been traditionally underrepresented. Regarding other key labour market variables, women health policy researchers were characterized less often than men with a graduate-level qualification (58% versus 61%) and more often in part-time work (11% versus 8%). In terms of social identity variables, women health policy researchers reported significantly less often than men as being the primary household maintainer (50% versus 72%), yet more often residing in a household with children present (53% versus 48%). Women were also less likely than men to have been adult migrants to Canada (15% versus 26%).

Table 3 Percentage distribution of the health and non-health policy research workforces by sociodemographic and labour market characteristics, according to gender

Bivariate analysis of wage differentials by gender

Based on the simple linear regression model, women health policy researchers were found to have earned 9.0% (95% CI 5.1‒12.7%; p < 0.05) less than men. This was the narrowest (unadjusted) female‒male wage gap among the eight occupations under observation, which otherwise ranged between 9.2% (among education policy researchers) and 23.9% (among business development policy researchers) (Fig. 3). The bivariate analysis of the policy research workforce also confirmed a strong positive correlation between the degree of occupational feminization and the size of the gender wage gap (r = 0.76).

Fig. 3
figure 3

Female‒male wage gap by percent female among health and non-health policy researchers, according to policy domain

Multivariate and decomposition analyses of the gender wage gap

The multivariable linear regression analysis upheld the evidence of a significant gender wage gap in the health policy research workforce, with women earning 4.8% (95% CI 1.5‒8.0%) less than men, after adjusting for other labour, social, and residential characteristics (Table 4, model 5). Those in their early career stage (aged 25–34) tended to earn less than their more established colleagues, all else being equal, as did those who had immigrated to the country in adulthood compared with their counterparts who were native-born or who had migrated in childhood or adolescence (i.e. prior to exposure to advanced education and labour market access).

Table 4 Coefficients (and 95% confidence intervals) from the linear regression models for predictors of annual wages among health and non-health policy researchers

Across non-health policy research occupations, the gender wage gap held as significant for five other domains: women’s earnings averaged from 4.0% less (among social policy researchers) to 12.3% less (among business development policy researchers) than men’s earnings (Table 4). No discernible gender-based wage gaps were found for policy researchers in government programmes and in education domains, among whom any raw wages differentials were largely attributable to age, graduate-level educational attainment, and adult migrant status.

In a regression model pooling all eight policy research domains together, the seven female-dominated occupations were each found to pay significantly less on average than economics policy research (i.e. the sole male-dominated occupation under observation), all else being equal (not shown). In particular, the mean annual wage among health policy researchers was 21.1% (95% CI 19.4‒22.8%) lower than their counterparts in economics policy research. In relation to economics policy researchers, wages averaged from 15.4% less (among business development policy researchers) to 36.2% less (among recreation policy researchers). The overall gender wage gap held as significant, with the mean earnings of women assessed at 8.1% (95% CI 6.9‒9.2%) lower than men, regardless of policy domain or other professional or personal characteristics.

The decomposition analysis indicated that, as could be expected, differences between women and men in educational attainment and other traditional human capital variables accounted for much (27%) of the gender wage gap in the policy research workforce (Table 5). However, 15% of the wage differential was attributable to occupational differences, i.e. by the domain of policy and programme research, distinctly from other labour characteristics. The gender wage gap was less pronounced in health policy research compared with the (better-paid) economics policy domain. Age differences between women and men accounted for 6% of the wage differential and differences in social identity characteristics accounted for 10% of the differential. After decomposing gender differences in professional wages, a significant 40% of the gap remained unexplained by the measured predictors.

Table 5 Explained and unexplained components of the female‒male wage differential in the policy research workforce (eight pooled policy domains)



Source link

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %
Previous post Global CRISPR Technology Market Key Opportunities And Strategies For 2020-2030
Next post SKEMA Business School launches ‘SKEMA Law School for Business’